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I. INTRODUCTION

The studying minimal immersions into cones of the Euclidean space, introduced a global version
of maximum principle on any Riemannian manifold €x,(-) whose sectional curvature is

bounded from below and also provided examples where it fails to hold. When stated for Laplace
, Direct compute operator and with the obvious meaning of the symbols, the global maximum
principle sounds as follows for every bounded above uec?(m) there is a sequence
X, & M such that for each n .

(1) u€, >supu—(1/n),[Vu| €, X@/n),Au(x,)<(@/n).

The purpose of this project is to provide a maximum for manifolds partial differential operators

which would be assessable to an able student with potter and Weinberger maximum and

minimum principle on R.M by grasp of subject sub manifolds before proceeding to the more
general computation of the spectrum, isopectral manifolds.

I1. ANALYSIS MAXIMUM PRINCIPLE FOR RIEMANNIAN
MANIFOLDS
2.1 Maximum principle on Riemannian manifolds
In this section we consider Viscosity solutions to second order partial differential equation on
Riemannian manifolds . We prove maximum principles for solutions to ( Dirichlet problem) on a
compact Riemannian Manifold with boundary , using a different method, we generalize
maximum principles of omori to a Viscosity version. We also prove maximum principle.
Definition 2.1.1 Upper and Lower Semi continuous Functions
We use the following notations
(@) USC(M) : is Upper semi- continuous function on (M) .
(b) LSC(M) : is Lower semi- continuous function on (M)
Definition 2.1.2 A viscosity Sub solutions on M
A Viscosity sub solution of, F =0 on M is a function U eUSC @ _such that .
(a) is a Viscosity super solution of ue LSX @
(b) F&u, p,X >0foralixe M and €, X =J%u&_, U isa Viscosity solution of F=00n M if
it is both a Viscosity sub solution and a Viscosity sup solution of F =0 on M.
We can similarly define , J%*u(x) ,J* u(x)as
32 u(x)= P, X)eTg (MxS*) T (M)=>(%5,u (%), P(X)
aslimt (X, u(X,, Py, X, ) € I%*u(x,)inthetoplogyof f(M)

32u(x)= 4, X) Ty, (M xSy (M)=> (%, (%), p(X)

@) aslimt (x,,u(X., P, X, ) € 3% u(x,)inthetoplogyof f(M)

A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., [Js=NNECEELEMITIE! as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering, Science and Mathematics
http://www.ijmra.us



March | IV Volume 5, Issue 1 ISSN: 2320-0294

2016

Theorem 2.1.3 Riemannian Manifold with Sectional Curvature

Let M be a connected Riemannian Manifold with sectional curvature bounded below by
—K?2.Given tow points

X, yeMwith dé&y <min i¥& i€ _3y:§1 1> M the unique geodesic of unit sped with

y €= y.Denote by p, (t):T, M —T,, M the parallel transport along y Then any tow vector

V, and Vv, satisfying <V1,;f();§ =<V2,;F> =0, the Hessian of square of distance functiong on
M x M satisfies.

©) D2p(V,,V,), (Vy,V,) <2l k(Vl,V2>+cotth(Vl,V2>—2Ik[ﬁ< - py(I)Vlﬂ

kI
2

particularly D@ (V,, p, (t)V1), (Vy, P, ())V,) <41k V| >+ KI coth[ ]Before proving the give

some remarks.
Remake 2.1.4 Hyperbolic Space 1~ k="
When M is the hyperbolic space H" € k2 ’ we can also write the p2, on the subspace

(4) 40) 5x ¥() FcT,MxT M
Remark 2.1.5 Curvature Bounded

Not that we allow K .to be an imaginary and in case that the curvature is bounded below by a
positive constant, we can get a corresponding estimate.

Remark 2.1.5

We also a version similar to laplacian comparison , when we have a Ricci curvature lower
bound. We will that is useful in applications.

Lemma 3.1.6
Let M be a compact Riemannian Manifold with or without boundary u cusc ~ ve LsC/

and £, =sup {u(x)—v(y)—%d ¢ yf, X, Y€ M} For a >0, Assume that ,,, <+ for large & and
&, .y, satisfy
(5) lim ,Ho{ya —(u(a}v{/a }%) d &, yaf} =0

Lemma 2.1.7 M,,M, Riemannian Manifold Boundary

Let ™M;,M,be Riemannian manifold with or with or without boundary
u, eUSC@M, | u, € LSC@M, .and pcC? @1, xM, . SUPPose &,y = M, x M, is local maximum
of u, & -u, ¢ —p&,y_.then forany >0 there exist X, eST, M, and X, €S*T M,, such that

©) O, p(x,y), X; £I* 0 (%) forizl
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Theorem 2.1.8 Compact Riemannian Manifolds

Let M be compact Riemannian Manifold with or without boundary am , f ¢ =C €, R _proper
function satisfying. p€—-s <F&r,p,X -Fé&r,p,X _ for r>sThere exista function

W: p,o — P,oo_satisfying W € >>0 when t>0and w @+ =0.

2.2 Viscosity Maximum Principle on Complete Riemannian manifolds
Maximum principle for C2.function on complete Riemannian manifold were already developed

gradient estimate for C?2.function some in equalities and proved a maximum principle which is
well known and has many important applications in geometry , In this will generalize both
maximum principle to non-differentiable function , the approach is quite different m even for

C2.function we present here a new proof for maximum principle.

Theorem 2.2.1 Curvature Bounded in Riemannian Manifold

Let m be complete Riemannian manifold with sectional curvature bounded below by a constant
—KZlet ueUSC@M and velLscea  be tow functions satisfying. 4 :=sup, .y & >-vé& <+
Assume that u and v are bounded from above and below respectively and there exists a
function w: p,oo ]> P,o_satisfying w g >0.when |>0.and w @,+ =o0such that

Uk ~u@ <wl &y _ Then for each € > 0there exist
Xy, €M, such that @, X, 23%u& . €.Y, £3%v{, such that u€u€ >u—s .And
such that .

) d€,.y, <¢ .| p,—q,°P,J<e, X, <Y,op, e P,

Where 1=d (g,yg:and p, Cis the parallel transport along the shortest geodesic connecting
X, and vy, .

Proof :

We divide the proof into tow parts :
[1]: without loss of generality , we assume that x4, >0. Otherwise we replace u by u— x4, +1for

each o >0we take %, e M suchthat. , ¢, ~ v, }W[ /%JZ#O :

[2] :We apply to ¢, (x, y):%d (<,y3+%ad ¢, x 7+%ad €,.y 2. We have for any ¢ >0there

~

exist X, € ST, M and Y, ST, M suchthat. ©,¢, €,.Y, > X, =J**u€, and

€D,p, €,.y, > X, £3%ug, and the block diagonal matrix satisfies .

(8) _[£+||Aa||j| g(xa ° JgAa+5A§,
o 0 =Y

Theorem 2.2.2 A Complete Riemannian manifold with Ricci
Let M be a complete Riemannian Manifold with Ricci curvature bounded below by a constant
be two functions satisfying — ¢ —1 k2, letucUSC €1 SvelLSC@
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to = SUpycy B€& V& <+oo. Assume that u and v are bounded from above and below
respectively and there exists a functionw: R, — R, With w@ =w@+ =0 such

thatu& ~u€ <wd &,y _. Then for each ¢ >0there exist x_,y, e M ,

©, X, = F2+, & _ Q.Y =J°"vg, suchthat g ¢, ,y, <& Psq, o P, =&, trX, +zWhere
| =d€,,y, and P, Cis the parallel transport along shortest geodesic connecting x, and v, .

Proof :
Let D, be the convex neighborhood of %, chosen in the proof of the last theorem and —k2 is the

lower bound of curvature in D, .We can assume the diameter of D, is small such that both
|P.[ and |Q, | are bounded by 2« and 22, respectively , By any orthonormal bass

ST e, at X, with e =@ .
n ~n ~ " sinh ki, /2 3 2 20
(9) 2 (X e0.6) i§l<YaPyQ§,>s 26-1Kk, e T3 kla/2+4(| 1562+ 22

Here we may change base if necessary since we are computing the traces of X, and

Y, respectively therefore we have « >0 such that whena > ¢ .
(10) <X, —trYa:sgsg

The rest of the proof is the same as that of the preceding theorem .
Corollary 2.2.3 Complete Manifolds with Ricci Curvature Bounded
Let M be complete Riemannian Manifold with Ricci curvature bounded below by a constant

—(1—1]<2and f a C?function on M bounded from below then for any & >Othere exist a
point X, € M such that

f& <inf f+e , |Vf | & <& Af & >-¢
Proof :
Let u=inf f ,and v= f .wcan be chose to be a linear function . it is straightforward to verify
that all conditions in the theorem are satisfied .
2.3 Maximum Principle for Inhomogeneous Elliptic Inequalities on Complete

Riemannian Manifolds
In this section we introduce the main notation ,form now on denotes a smooth complete

Riemannian Manifold, with metric tensor g € C” ﬁ,T“’, meT, m:.

Definition 2.3.1 Two Bundles is Manifold

The fibered product bundle of two bundles G,;rl,m:and €,7,,m is the manifold.
(11) ExmF= 4¢f cExF:7,€¢ =7,€

With the induced vector bundle structure.

Lemma 3.3.2 If u:Q — Ris lipschitz function , then u e H ;> @ for every p>1

loc
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2.4 Maximum Principle for Inhomogeneous Inequalities

In this , we extent to a Riemannian setting results concerning Maximum principle for solution of
inhomogeneous elliptic inequalities for the Euclidean case , we cover their results, but at the
some time we establish more precise a prior estimates. The p-laplacian Beltrami operator defined
for a smooth function u as (12)

. -2 A
A, u= div (|Vu|p vu ., p=1
Or mean curvature operator given by but they also apply to more general and sophisticated

differential operators on a Riemannian Manifolds, which are elliptic a cording to the new
definition of elliptic proposed , from now on we assume Qto be a bounded and smooth domain

of m, so thatQ is a smooth manifold with boundary . However can also treat the case of
Q, Q is a smooth manifold with boundary , condition u< M on éQis replaced by .
(13) lim, ., sup u €« <M

While by u <M on 6Qwe mean that for every § > 0there exists a neighborhood of 6Q in which
u<M +sin fact u will be assumed only of class H;? € so that it have n trace on oQ.We

consider inequalities of the form divA &u,Vu_+ B &u,Vu_>0 in Q.Where divergence

and gradient are taken with respect to the Riemannian structure .We assume that
A:T Q@xoR —>T Qwhere T @x,R stands for T Qx, (QxR)as already mentioned , and

A((,z,gjeTxmfor all xeQ, zeRand {eT,mwhile B is a real function defined in
T Qx, R, We also suppose that there exist p>1, & >0 V a,b,b,,b>0such that for all
€. 2,¢ =T x, Rthere hold <A(<,z,g“:§2a1|§|p —a,|7|” —ap>and

B &z¢ Xa|¢ |p_l+b2| z |p‘1+bpfllf p =1 of course, by a rescaling argument it is enough to

consider only the case a =1so without loss of generality we assume a; =1is throughout .

Definition 2.3.1 Weak Solution
A ( weak ) solution of ( 536) is function Hj?€Q such  that

Au,Vu €5, . QTQ " ,BqVu €Ll Q, where p,:%_ﬁf p=1and p'=wif p=1and
such that .
(14) i Au,VuVYgdm < (o B (Vu pdm

Q

Theorem 2.3.2 Semi — Maximum Principle
Let u be p-regular solution of satisfying as . Assume also that u <M on oQ for some constant

M=>0.Thenu® el °°(2:and there exists a universal constant C =C §, p,|Q|:2 osuch that .

us<M+C (H u* p+a+b+k}n Q, where k =k (al,bl,szis given by.
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(15) k:{[bl+(i2+b2:}/p:|n/p +(a2}/p+b2%p‘l)jM if p=0
The same result can be given if we depend on the x-variable with some regularity precisely

denoting simply by |f|the norm in L*@Q of fand qis assigned ,we have the following
generalization.
Theorem 2.3.3 Maximum Principle

Let U be p-regular solution in Qwhere A and B satisfy (with b =0, =0 suppose u<M on

1
0Q for some constant M >0and if p=21we also assume that a, +b< |Q|F (-5]s

Defection 2.3.4 Maximum Principles Riemannian

For a sub harmonic function on f on Riemannian manifoldM if there exist a pints in M at
which attains the this property is to give a certain condition for a sub harmonic function to be
constant , when we give attention to the fact relative t these maximum principles.

Definition 2.3.5Liouvile’s

(a)Let f be a sub harmonic function on R", if it is bounded then it is constant.(b) Let f be a

harmonic functions on R" , M>3_If it is bounded then it is constant . We are interested in
Riemannian analogues of Liouvile,s theorem compared with these Last tow theorems we give
attention to the fact that there is an essential difference between base manifold . In fact one is
compact and the other is complete and an compact , we consider have a family of Riemannian
manifold (M, g)at the global situations it suffices to consider a bout the family of complete
Riemannian manifold of course , the subclass of compact Riemannian manifolds. (M,9): is
complete Riemannian manifold since a compact Riemannian manifold .

Theorem 2.3.6 Complete Riemannian Manifold

A let M be complete Riemannian manifold whose Ricci curvature is bounded from below , if
€7 nonnegative function I satisfies Where A denotes the Laplacian on M , then  vanishes
identically, the purpose of this theorem is t prove the following ( Leadville Type ) theorem in a
complete Riemannian manifolds similar to theorem in a complete Riemannian manifold similar
to give anther proof of ( Nishikawas theorem ) . In this note main theorem is as follows .

Theorem 2.2.5 Riemannian Manifold whose Ricci is Bounded

Let M be a complete Riemannian manifold whose Ricci curvature is bounded from blew , if
C?- nonnegative function f satisfies Af <C, f,. Where Cyis any positive constant and N is any
real number greater f vanishes identically .

Theorem 2.2.6 Ricci Riemannian Manifold

Let M an n-dimensional Riemannian manifold whose Ricci curvature is bonded from below on

M | Let G bea C?. functions bounded from below on M , then for any €20 there exists a
point Psuch that
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(16) | VG(P) [<e , AG(P)-¢ and inf G+¢&>G(p)

Proof :

In this section we prove the theorem stated in introduction first all in order prove theorem , then
our theorem is directly obtained as a corollary of this property and hence Nishikawas theorem is
also a direct consequence of this ( Nishikawas one )

Theorem 2.2.7 Manifold and Ricci Curvature

Let M be a complete Riemannian manifold whose Ricci Curvature is bounded from blew , Let
F be any formula of the variableFwith  constant  coefficients  such

that F(f)=(Cy f"+C; " T, +C " )+C.y Where n=1  1>n-k>0 and
Co2Cy; if aC?- nonnegative function f satisfies .

(17) Af>F(f)

Then we have Where f; denotes the super mum f the given function f .

Proof :

From the assumption there exists a positive number a which satisfies Cis1 <@"Co For the
1-n
constant a given above the function G(f)with respect to 1-variable f is defined by(f +a) 2 | n
is the maximal degree of the f, then it is easily seen thatGis the C?- function so that it is
1-n
bounded from appositive by the constant @ 2 and bounded from below by 0 , By the simple

calculating we have
1
1 n+

(18) VG =—nT_G“-l Vi

1-n 2n n+1

Hence we get by using the above equation m G il Af —GAG——|VG| Since the

Ricci curvature is bounded from below by the assumption and the functionG defined above
satisfies the condition that it is bounded from below , we can apply the theorem ( 3.27) to the
function G . Given any positive numberé  there exist a point P at which it satisfies ( 31) and (
32) , (33) the following relationship at P.

2n

(19) lTnG(P)” LA(F)>- eG(P)—”+1 2

Can be derived , where G(P)denotes G(f¢) thus for any convergent sequence eGo =inf G | by
taking a sub sequence , if necessary because the sequence is bounded and therefore each term
G(P,) of the sequence satisfies equation we have G(R,) = Gy =infG and the assumption

n=1 An the other hand it follows from we have

2n
(20) LG AR 2~ O(Py)
n
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And the right side of the a above inequality converges to zero because the function G is

bounded by choosing the constant a it satisfies Cxia@ " <Co, A accordingly there is a positive

1-n n n+1 . .. .
number ¢ such that I Caa S5STC0 ,Cois the constant coefficient of the maximal

degree of function Fso for a given such that as>0, we can take a sufficiently large integer

msuch that
2n

LN G(R ) L F(F(P))2 -0

2
Where we have used the assumption equation ( 3.2 ) of the theorem ( 3.2.6) and equation (3.4) so

(21)

20
this inequality together with the definition of G(P,) Yield F(f(P,)) < E(f +a) (Py)"
Remark 2.2.8
Suppose that a nonnegative function f satisfies the condition we can directly yield
VE"l=(-)f "2V f
22) Af "=(n-D(n-2) F"3V(fV F)+(n-Df"2A f

we define a function hby f ", if n>2then it satisfies Ah> (n—1) Coh® Thus concerning the

theorem in the case n=2the condition (2.7) is equivalentl<n<2 where C; is a positive
constant

I11. GEOMETRIY MAXIMUM PRINCIPLES FOR HYPESURFACES IN
LORTZIAN AND RIEMANNIAN MANIFOLDS

3.1 Geometrid Maximum and principle Riemannian manifolds

The version of the analytic principle given by:

(@) Uy is lower semi — continuous and M §, % H, in the sense of support function.

(b) U, is upper — semi — continuous and M P, * H,in the sense function with a one — sided
Hessian bound .

(c) U;<U, in gand U, =U,is locally a C**- function in < finally ifa’ and hare locally
ck*2«function inQ. In particular if a’ and bare smooth isu, =u,, Q < R"is specially natural

in Lorentzian setting as C?space like hyper surfaces in
definitionS, . = $:d @.exp (r,n) = r:_ , them S, contains ~¢_and neighborhood of 7¢_
is smooth , at z¢_ pointing unit normal r >0and k — T € _can a lows be locally represented

as a graphs also applies to hyper surfaces in Riemannian manifolds that can be represented
locally as graphs. We first state our conventions on the sign of the second fundamental form and
the mean curvature to fix choice of signs a Lorentzian manifold ¢u1.g _.
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Definition 3.1 Space time and Spacelike
A subset N < M of that spacetime €v1.g “is C°spacelike hypersurface , if for each p e N, there
is a neighborhood U of P in M so that N ~V is causal and edge less in U .

Remark 3.1.1
In This definition not that if D@ ~U,U is the domain of dependence of inu, then

D@ nU,U jis open in M andu ~U is a Cauchy hyper surface is globally hyperbolic thus by
replacing U by D@ ~U,U ‘we can assume the neighborhood U is the last definition is globally

hyperbolic and thatu ~U in a Cauchy surface in U In particular a C°space like hyper surface is
a topological. Let €1.g be a spacetime and let Njand N, be two C° space like hyper surfaces in

«1.g which meet at a point q. Say that no is locally to the future of N,nearq iff for some
neighborhood U of Pin which N,is a causal and edgeless NonU cJ “@;, U where
J *@,,u_is causal future of N,in U .

Definition 3.1.2 Saclike hyper surface is Space-time
(@) Let N be a C°space like hyper surface in the space-time @v.g and Hga constant then

N has mean curvature < Hy, in the sense of support hyper surfaces for allg e N , £ > Othere is
C? future support hyper surface Sq,g to N at gand the mean curvature of Sq,gat g satisfies
Ho%* <Hp+e.

(b) N has mean curvature > H, in the sense of support hyper surfaces with one- sided Hessian

bounds for all compact sets K < N there is compact set K" < T :and constant C, >0, such
that for all ge N so that .
the future pointing unit normal n"¢<-and second fundamental form h" €2 of R, - satisfy .

P@.c> P @.:c
(23) Hq W all ’ hg 3 =2-Cyq |qug
Proposition 3.1.3
Let q.g be a space-time I, 20and K —T € “a compact set of future pointing time like unit
vectors. Assume that there is a ¢ so that for all 7 e k,the geodesic y,, (t) =exp(t,) maximizes the
Lorentzian distatance on the interval [) + 5_f0r each nek,and I 20, let 7 ¢ be the base point

of I, and set.
(24) S,,=P: d€ exp(r,p) 3
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Theorem 3.1.4

Let N,and N,be C°spacesurlike hyper surfaces in a specimen €v1.g which meet at a point
such that N, is locally to future of N,, near J, . Assume for some constant.

(a) No has mean curvature < H, in the sense of support hyperspaces .

(b) N,has mean curvature > H,in the sense of support hyperspaces with one- sided Hessian
bounds, then u, =u, near(y,(i,e)there is a neighborhood of (,such that No"0=N;n0,
Moreover is smooth space like hyper surface with mean curvature H, .

Remark 3.1.5
If @1.g_ the metric only has finite differentiability , say g § is C*“with k>2,and 0<a <1

then since the function a'Jand b in the definition of the mean curvature operator H , depend on
the first derivatives of the metric , they are of class . Thus the regularity part, implies hyper

surface Ny m0=N; N0 in the statement of the last is C**<.

3.2 Reduction to Analytic Maximum Principle
Let €1.g be an an-dimesinal pastime and let V' be metric connection of metric § then near any

point ( of M there is a coordinate system (1, il " _so that the metric takes the form.

-1 . .

25) 9= 3 (Gas)dx"dx® =3 (g; j)dxdx’ —(dx")’
.B= i,]

And so thato/ox" is future pointing time like unit vector . ( To construct such coordinates

choose smooth spaccelike hypersurface) S in M passing through § and let €, x2....., x”‘1: be
is as required . Let f be a function defined near the origin in R"*with f (0) = 0the define a map
F;form a neighborhood of the origin in R"'to M so that the coordinate system
¢ 2. x }f is given by. F, ¢ 2. x“‘l:: ¢ 2. x”‘1: ,
this parameterizes a smooth hypersurface N ; through X, and moreover every smooth spacelike
hypersurface X is uniquely parameterized in this manner for unique f satisfying .

(26) 1—inji11g” 6D, 0, 20

This is exactly the condition that the image of F; is space like when the image is space like set .

1/2
X;=€iaxi 30,1 @rox W :(1—?51@'1 D, f Dj) ,n:l(a/axu”_i_l g"iD f Q/axlj
ij w )
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Then (1 , X sy Xy _iS @ basis for the tangent space to image of Ny and nis the future
pointing timelike unit normal to N;. Now tedious calculation shows that the second

fundamental form hof is given by .

(27) h((i,Xj (Duf+ --—V--

Where T; Jk are the christoffel symbols and V; ;are by

Solving for the Hessian of f in terms of the second fundamental form of N given .

The induced metric on N has its components in the coordinated system (1, X2 X”’llgiven
by
(29) Gijzg«i,xjfgij—Diijf
Let §ii 1, jtthen the mean curvature of N
1 -1 1
H=—-,h=—— % G'h(X;,X;)=—— 3 G 1@ f+I']-V,
n-1 n—1|1_1 ( )= (n— 1)W|11 ()" R Where
x=€.%.... ' P« f.of €30 f(0D;f(x) Jtand V; € ,Df s
1 .. -
a'l g f,Df > G ¢, f,Df and
~ (n—Dw B
(30) b(x, 1,0 1)=—- £ G € -,
]:

Therefore if H [ “is the mean curvature of N ; then the operator f :— H [ Jis quasi-linear .
Lemma 3.2.1 Curvature Tangent Bundle

Let U ,(Q,)< K where K is compact , then there is a compact subset K of the tangent
bundle T (M )that contains the set U, $,(x): xe <, ifand only if thereisa p>0 so that
for all « the lower bound W, (x) > p,hold for x € ©2_,, Moreover if this lower bound holds
and0 < p < p, thereisbound | f,|< gandif U =U, 5, « R"* x Rx R"*is defined by .

_ N
(31) U :Up,B.K = %(1,X2, ......... ,Xn 1, r, ()1, Poyeeeeeens » P 1/ (( r, p/
xep. |r|<p. nst 9" &r P, P,<1- p?then for any xekthe fiber functions f, are
ij=1

U admissible over and , finally the mean curvature operator H is uniformly elliptic onU .
3.3 Geometric Maximum Principle for Riemannian Manifolds

We now fix our sign conventions on the imbedding invariants of smooth hypersurfaces in
Riemannian manifold v, g . It will be convenient to assume that our hyper surfaces are the

A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., [Js=NNECEELEMITIE! as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Engineering, Science and Mathematics
http://www.ijmra.us



March | IV Volume 5, Issue 1 ISSN: 2320-0294

2016

boundaries of open sets.An this a lways true Locally it is not a restriction by V let D < M be
connected open set and let N < &D, be part of all dD is smooth , let » be the outward pointing
unit normal along N then the second fundamental form of N symmetric bilinear form defined

on the tangent space to N by h" &,Y >(V,,V, ) The mean curvature of N is then
HY =1
n-1"%9

for T(N ) this is the sign convention so that for the boundary S"*of the unit ball A" in R "the

1 na
y and h" =1 1r_]21 h" (€,€;) where (&;,8,,...., €,_1)is local orthogonal from
— i=

n-1)

. . .. . (
second fundamental form h" = — g ‘SN is negative definite the mean curvature is H® -1.

Definition 3.3.1 Hypersuface on Curvature=H,
Let U be an open set in the Riemannian manifold 1, g then :
(a) U has mean curvature > H, in the sense of contact hypersurfaces iff for all q<oU and

£>0there is an open set D of M with D c U and geoDnear gisa C? hypersuface of
M and at point q, H(‘?D >H,—¢

(b) oU has mean curvature > H, in the sense contact hypersurface is constantC, >0 so that for

all qekand &> 0there is open set D of M with E)gl__l and q e oDthe of oD near (,
HZ® > H,—zand also .

oD
(32) HP >—Cpy | 8

The Hyper-surfaces of manifolds as Let M < K be any hyper-surface of quaternion manifold
«,Q ,we define H < TM to be the maximal Q- invariant distribution on M , if f is any

defining function for M .
(a) If fis any defining function for M | ie M = f(0) and df |y, *Othen .
H= % eTM :df (J;X)=df (J,X) =df (J;X) =0
This H is always a smooth co-dimension 3-disribution on M .
(b) we say that a hyper-surface M of quaternion manifold «,Q = ,,J,,J, _isa QC - hyper-

surface if ;
Vvdf (X,X)#0, XeH ,X =0

Vdf (IX,JY)=Vdf (X,Y), X,YeH ,s=123
Where H = TM js the maximal Q -invariant distribution on M,V is any torsion — free quaternion
of «,Q and f is any defining function for M , for example the field of quaternions
H =Supg i, j,k Wherei?= j?=—k?*=-1and i. j=— j,i=k . Consider the flat quaternionic
manifold K = H"**whith its standard quaternionic structure Q =Span &%,J,,J; ,
J () =—xi , J,(X)=—x.j , I5(x)=—xk is a torsion free quaternionic connection v we take the
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flat connection here . It clearly holds VxQ < Q, Letx=@,,0,..... p_ = H" xH we have the
following three basic of QC hyper-surfaces H" xH ,

M, =0 g |2 +Re(p)=0 , M,:=0,|q, |2 | p|2 =-1,M;:=0,4|q, |2 +| p|2 =1the sphere.

Theorem 3.3.1 Geometric Maximum Principle for Riemannian Manifolds
Let €,g be a Riemannian manifold u,,u, = M open sets and let H,be a constant , assume

that .
(@) UynU, =0

(b) U, has mean curvature = Hy in the sense of contact hypersurfaces.

(c) au, has mean curvature = H yin the sense of contact hypersurfaces with a one sided Hessian
bound .
(d) there is a point p er AU and a neighborhood N of pthat has coordinates

(1, X2, X" :cantered at p so that for some r >0the image of these coordinates is the box
(l, x2,.. 4l ;—-‘ X! ‘ < and there are Lipschitz continous and there are Lipschitz continuous
functionU,,U; : (1, X2, X”‘lz‘ X! ‘ <r,¢ r,r: , so that Uy M N are given by .
(33) Uo, N=(x5 %%, xM):ix" 2U, (x5, %2, X"

Uy, N=(xt %%, x™) x>0, (<8 %2, X
This implies Uy =Ujand U is smooth function , thereforedU, "U; =0U; NN isa
smooth embedded hypersurface with constant mean curvature Hg ( with respect to the outward
normal to U;).

Definition 3.3.2 Lorentzian Mainfolds
Let €,0 :be a Lorentzian manifold and let g =0, then €,g _is globally hyperbolic of order

qif and only if M is strongly causal and x<y,d &, y:_% implies that C &, y "is compact

wherec &, y :is set of causal curves connecting x and y .

Corollary 3.3.3 Lorentzian Maximal Diameter Theorem

Let v1,g be connected Lorentzian manifold which is globally hyperbolic of order 1. and
assume that Ric(T,T)=>(n-2)for any time like unit vector T if ™M a timelike geodesic

- T

segment 7:[ 5 ,2}—>M of length 7z connectingX andy ,then D= 4:x<z<y is isometric to

61” (-1.9s_.Moreover if M contains a time like geodesic y =& o0,00 ~> M such that each

segment  » |[H”_is maximizing then €v,g s isometric to ef(—l),gg’. Moreover if
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M contains a time like geodesic y=¢ «,0 — M such that each segment j |lt+7r_ IS

maximizing then v, g _is isometric to universal anti-de sitter space R "(-1).

Definition 3.3.4 Asymptote Curvature |
Let 7:¢%,%:_>M be line in M, and let 56(%,%:for Pey €, let asbe a maximal geodesic

connecting P and ¢, if there is sequence and timelike unit vector v such that s, =7

P<y€x » and agy 0 >V eT¢ pthen the maximal geodesic starting at P in the direction Vv is
called an asymptote to 7 and V .
Definition 3.3.5 Timelike Lines |

A strip is a totally geodesic immersion f of €4, x ¢’is a timelike line for each sei. We will

denote by Sthe space (-z/2,7/2)xI , —dt?+cos?(t)dt?> into M for some interval |so that

f |h/2’”/2xsl—|st|me like line for each sel.

Lemma 3.3.6 Parallel Lines 72and 7
If 72and *2are parallel lines , then '%1'%2_ and the Busman function b!and biof 2 and

72through x and parallel to 1.
lemma 3.3.7 Lorentzian Productmtric
Let @, g, be a Riemannian manifold of dimension at least three , set M =RxNand give M the

lorentzian productmtric g=-dt*+gy let R ,5cpbe the curvature tensor of €,g as tensor.

3.4 The Spectrum of the Palladian in Riemannian Manifolds

To any compact Riemannian manifold €/ ,g is boundary we associate second- order (P.D.E),
the Laplace operator A is defined by : A(f)=—div(grad f) For feL?(m,g) . We also
sometimes write A for A if we want to emphasize which metric the Laplace operator is
associated with the set of eigenvalues of A is called the spectrum of A or of M which we will
write as space A (or space v ,g , they form a discrete sequenceo=4 < 4, <,....,.< 4, for

simplicity , we will assume that M is connected . This will for example imply that the smallest
eigenvalue 1,. Occurs with multiplicity .
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Definition 3.4.1

If L is liner operator defined on T,M , then the spectrum of L is the set of eigenvalues of L

It is denoted by space (L) . We take the Laplace operator A defined asA=—(ds+&d)

where & is adjoin of d in spectral geometry we consider the following two equations :(a) Does
the spectrum of M determine the geometry of M .(b) Does the geometry of M determine the
spectrum of M .

Definition 3.4.2 Sequences be Spectra

Sequences occur can as the spectra of manifolds a version of this question. Has been answered
what finite sequences can occur as the initial part of spectra of manifolds . If M is a closed
connected manifold of dimension greater that or Equal p preassigned finite

sequence0=4 < 4,,......, < is Sequence of firstK +1 eigenvalues of A for some choice of

the metric gon M . In particular , this means that for closed connected manifolds of 3-dimension
or Greater , there are no restrictions on the multiplicities of the eigenvalues 4; for i>0 . In 2-

dimension , there are some restrictions on the multiplicities of the eigenvalues. Let M be a
closed connected 2-manifold with Euler characteristic y(M) , and let m; be the multiplicity of

the j—th eigenvalue j>0 of the laplacian operator associated to a metric on M then :(a). If M
is the unit sphere, then m; <2; +1 . (b). If M is the real projective plane , then m; <2, +3 (c).
If M is the torus , then m; <2;+4. (d). If M is the klen bottle , then m; <2;+3(f) If,
x(M)<O0then m; <2, +2%(M)+3. [Note ] : For finite sequences 0=14, <4 < 4,,....., <
however the result by-Colin de derriere holds — even in 2-dimension .

Definition 3.4.3 Estimates on the first Eigenvalue

The geometry of a manifold affects more that the multiplicities of the eigenvaluees . Here we
will focus on bounds on the first non-zero eigenvalue 4, imposed by the geometry . the first
lower bound is due to lichnzeowicz .

Theorem 3.4.4 Ricci Tensor

Let 1,9 be a closed Riemannian manifold of dimensionn>2 and let Ric be its Ricci tensor
field if Ricci €, X >€—1k>0 . For some constant k >0 , and for all X eT(M) , then
A =2 nk.
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Theorem 3.4.5
Let@,g  be a closed Riemannian manifold , if Ricci €,X >€-1k>0 .For some
¢-1%k 7°
+
4 D?(M)
much easier to given upper bounds on 4, that it is give lower bounds . The basic result in this

area is a comparison theorem due to a complete Riemannian n- manifold whose Ricci curvature
is >(n-1)k,k , is some const.

nonnegative constant k and for all X e T(M) then A4, > . It is in general

Theorem 3.4.6 Ricci Curvature

If M is a compact n-manifold with Ricci curvature>(n-1)(—-k)k>0 , then

2
ﬂﬂs‘]_l/k+ 2C2
4 D“(M)

Wherec, is positive constant depending only on n.

Definition 3.4.7 Geometric Implications Of The spectrum

The spectrum does not in general determine the geometry of a manifold Neverthless earthiness ,
some geometric information can be extracted from the spectrum . In what follows , we define a
spectral invariant to be any thing that is completely determined by the spectrum .

Definition 3.4.8 Invariants From The Heat Equation

Let M be a Riemannian manifold . A heat kernel or alternatively fundamental solution to the
heat equation , is a  function K:(0,0)x(Mx)M —-M . That satisfies

K(t,x,y) is C' in (t)andC?inxand y . %+A2(K)=O where A, is the Laplacian with
respect to the second variable . Iimt o IK(t,x,y) f(y)dy= f(x)For any compactly supported
i M

function f on M .The heat kernel exists and unique for Riemannian manifold , its importance
stems from the fact that the solution to the heat equation .

(34) ;—U+A(u):0,u:|),oo:xM SR

Where A is Laplacian with respect to second variable , with initial condition u(0,x) = f(x) is
given by:

(35) u(t,x)=hJAK(t,x, y) f(y)dy
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If A :in spectrum of M and 4 :are the associated eigenfunctions (normalized so thst they form

an orthonormal basis of L?(M) then we can write .
(36) K (t,x,y)=sie”™" G0 &()

From this it clear that the heat trace Z(t)= | K(t,x,x)=xe g spectral invariant . The heat
t—0 M

trace has an asymptotic expansion ast—0".Z(t)=(4zt)9"M/2 ¥ a;ti. Where thea; are
j=1

integrals over M of universal homogenous polynomials in the curvature and covariant
derivatives. The first few of these are :

(37) ag=vol (M),a,=~ | 5 a,= | €s?~2[Ric[ ~|Rm[’_
6™ M -

Where S is the scalar curvature , Ric. is the Ricci tensor , R.m. is the curvature tensor . the
dimension the volume and total scalar curvature are thus completely determined by spectrum . If
M is a surface then the Gauss Bonnet theorem implies that the Euler characteristic of M is also a
spectral invariant . Amore in depth study of the heat trace can yield more information of

dimension n<6 and if M has same spectrum as the n-sphere S" with the standard metric (resp
. RP™) then M is in fact isometric to S" (resp. RP™) more on this can be found .

Definition 3.4.9 Isospectral Manifolds

As was alluded to earlier, geometry is not in general a spectral in variant two manifolds are said
to be isospectral if they have the same spectrum . Of non isometric isospectral manifolds was
found too distinct but isospectral manifolds .

Definition 3.4.10 Direct Computation of The Spectrum

The first of those is straightforward: direct computation . it rarely possible to explicitly compute
the spectrum of a manifold were actually discovered via this method . Milnor’s example
mentioned above consists of two isospectral factory-quotients of Euclidean space by lattices
of full rank being one of full rank being one of the few examples of Riemannian manifolds
whose spectra can be computed explicicitly spherical space forms — quotients of spheres by finite
groups of orthogonal transformations acting without fixed points form another class of examples
of manifolds isospectral for the Laplaction acting on p-forms for p<k but not for the

Laplaction acting on p-forms for p<k+1 (recall that a lens space is spherical space form where
the group is cyclic .
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Theorem 3.4.11

Let mIand mI, be compact discrete subgroup of a lie group G, and let g be a left invariant
metric on G if mI; and mI, are representation equivalent then .

(38)

Spec€y, /G,g =Specn,/G,g .

V. CONCLUSION

(@) The mj,m,be Riemannian manifold with or with or without boundary u, eusceu; ", u, <LsSC@,  and

»eC? @11 x M, -, do not replicate the abstract as the conclusion. A conclusion might elaborate on the importance of
the work or suggest applications and extensions.
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